Utilization of Renewable Energy for Offgrid Rural Electrification in National Electrification Project

Dr. Soe Soe Ohn Department of Rural Development Ministry of Agriculture, Livestock and Irrigation

6.6.2018

fppt.com

Current Situation of Rural Electrification

Electricity installed capacity			Difference between Rural and Urban Area		
Sr.	Resource	Installed Capacity	Category comparison	Urban	Rural
1.	Hydro Power	3033 MW	Poverty gap	0.047	0.023
2.	Gas	1236 MW	Access to water	65.2%	81.4%
3.	Coal	120 MW	ratio		
4			Malnutrition	33.7%	25.4%
4.	4. Renewable (Mini- 5 MW		Food poverty	2.5%	5.6%
nyaro, solai, Dioj			Poverty index	15%	29%
Total 4394 MW		Electrification rate	89%	16-18%	

Relevant Ministries on Electrification in Myanmar

Ministry of Electricity and Energy

- Urban and Rural Area (Grid-Extension)
- Ministry of Agriculture, Livestock Rural Area (Off- Grid) and Irrigation (Department of Rural Development)

Ministry of Border Affairs

- Border Area (Off- Grid)

Energy Status in Myanmar

Sr.	Energy Status	
1	Total Energy Production	27.5 mtoe (2015)
2	Total Energy Production (Renewable Energy)	8.5 mtoe (biomass)
3	Total Energy Production (Solar)	~ 0 mtoe
4	Total Energy Production (Micro Hydro, Hydro)	761 ktoe (2014)
5	Total Biogas plant installation (household size and big size)	About 190
6	Total Energy Consumption	14.2 mtoe (2015)
7	Potential Energy Production (Solar)	51973.8 TWH per year
8	Potential Energy Production (Hydro) and (Micro- Hydro)	100,000 MW
9	Potential Biogas plant installation	103 million head of livestock generating animal waste which could be used for biogas
10	Total Energy Need	up to ~ 21 mtoe

National Electrification Project

Grid Roll-out Plan from low-cost to high-cost connections

Phase 1, 2 & 3

- Dense areas require shorter distribution lines and lower cost per connection and will be connected first
- Remote communities require longer lines and higher cost and will be connected later

Phase 4 & 5

 Chin, Shan, Kachin and Kayah have highest cost per connection, thus to be connected in the final phases

National Electification Program for 5 Years (2016~2021)

- Leading Ministries
- **MOEE Grid Extension (310 Mil USD)**
- MoALI Off-grid (90 Mil USD)

Off- Grid Electrification Program

Sr	Programme	Village	Household	Remark
1	Mini-grid System	364	35049	PublicContribution-20%~50%
2	Solar Home System	5184	468186	Public Contribution- 10%~20%
3	Community Building (School, Clinic, Religious Building, Streetlight)	5548	40232	100% Subsidized by Project Fund
Elect Solar	rification System Home System	>	Electrification Ite >House-hold Elect >Rural Health Ce	m (9 items) trification (small, medium Largo ntre

>School (Primary, Middle, High)

7

- ≻Religious Building
- Rural Street Light

>Mini-Grid System (Solar, Hydro,

Bio-mass, Bio-gas System)

•

Yearly Plan of Off- Grid Electrification for 5 Years (2016-2021)

Sr.	Fiscal Year	S	HS	Mini-	Grid	Total		Estimated Cost (Million \$)	Remark
		Village	HH	Village	HH	Village	HH	(1,11110114)	
1	2016-2017	2708	141465	10	1081	2718	142546	34.910	Complete
2	2017-2018	1367	87958	34	5184	1401	93142	24.954	On Going
3	2018-2019	1500	133275	100	11050	1600	144325	50.508	Plan
4	2019-2020	1500	122950	100	9095	1600	132045	46.355	Plan
5	2020-2021	1500	128550	100	7380	1600	135930	46.394	Plan
	Total	8575	614198	344	33790	8919	647988	203.121	

Implementations under NEP in (2016-2017) FY

- Solar Home System
- (7) State & Regions, (95) Townships
- (2708) Villages, (141465) Households
- Mini-Grid System

- (4) States, (5) Townships

Tariff Rate

- (8) Project Sites, (10) Villages, (1539) Connections
 {1081 HH, 103 PF, 320 SL, 35 Productive End Uses}
- Developer's Operation Period 6~10 years

(based on tariff rate)

- 350 Kyat ~ 500 Kyat

Financing and Subsidy Policy

2012-2013 FY~ 2015-2016 FY -100% Government's Subsidy in cooperation

with International Organizations

2016-2017 FY (NEP)

9

opt.com

- Solar Home System
- (85%~90%) (NEP Budget)
- 10%~15% (Public Contribution)
- Mini-Grid System
- 60% by NEP Budget
- 20% by Developers
- 20% by Community _____

Funding Resources

World Bank's IDA Loan - USD (90) Million (2016~2021)

100%

- Government's Yearly Budget USD (15) Million (Average)
- KfW's Grant
- **GIZ's Grant**

٥

- Italy Soft Loan
- ADB's Grant
- **JICS's Grant**

- Euro (9) Million (2016~2019)
- Euro (2) Million for TA (2016~2018)
- Euro (30) Million (2018~2021)
- USD (2) Million (2015~2017) (Complete)
- JPY (994) Million (2014~2017) (Complete)

Technical Changes in Off-Grid Electrification Myanmar

SHS Before 2016 g

SHS Before 2016	SHS After 2016		
□ 80Watt Solar Module -1Pc (5yrs Warranty).	□ 60Watt Solar Module -1Pc (10yrs Warranty)		
□ Battery (12V/65AH) -1Pc (1.5yrs Warranty)	□ Battery (12V/40AH) (Lead Acid)/-1Pc (3yrs Warranty)		
□ Controller (10A/12V) -1Pc (3yrs Warranty).	(12V/23Ah) (Li-ion)		
□ Inverter $(12V/300W)$ - 1Pc (3yrs Warranty).	$\Box \text{ Controller} (5A/12V) -1Pc (3yrs Warranty)$		
□ LED Bulb (3W) - 2Pcs	□ LED Bulb (12V/3W) - 5Pcs (3yrs Warranty)		
□ LED Tube Lamp (10W) - 1Pcs	□ Cable (8m, Length) -4Sets (3yrs Warranty)		
□ Cable (8m, Length) -4 Sets	Service Level		
Service Level	- LED Bulbs (5hr), Phone Charging (2.5hr),		
- LED Bulbs, Phone Charging, TV (25W)(3hr)	15W DC TV (3hr), Fan (3hr)		
Service Level by Mini-Grid under NEP	P Technological Development of Solar Home System (Before 2016 Vs After 2016)		
Lighting	More Compactable		
TV, Sound Box , Mobile Phone Charge	ger, Better Technical Assurance and Quality Assurance		
AC Fan	Technological Development in Mini-Grid System		
* Refrigerator	Better Quality (Being Grid Ready Standard)		
Productive Uses(up to 1KW)	More Systematically (Using Smart Meter and Pre-paid System		
0	More effective and sustainable		
pt.com			

RE Used in SHS Program by NEP Project for (2016-2017)

		Solar Home System/ Public Solar System			
No.	State/Region	No. of Site	Installed Capacity (MW)		
1	Kayin	12536	0.71		
2	Chin	13865	0.80		
3	Sagaing	12059	0.69		
4	Thanintharyi	20928	1.26		
5	Rakhine	35403	1.81		
6	Shan	32767	1.74		
7	Ayeyarwaddy	33102	1.86		
	Total	160660	8.9		

RE Used in Mini-grid Program by NEP Project (2016-2017)

		Solar Home System/ Public Solar System			
No.	State/Region	No. of Site	Installed Capacity (MW)		
1	Thanintharyi	1	0.063		
2	Ayeyarwaddy	1	0.024		
3	Magway	4	0.271		
4	Bago	2	0.035		
	Total		0.393		

fppt.com

Mini-grid Program (NEP)

Dverview Technologies

grids installed in the first year, rising to 10% in year 6.

more specialized engineering skills to deploy and cohesive community with effective village committee

1% of households in the program will be served by mini-

water flow and head in case of mini-hydropower, opportunities for productive-use loads

clustered housing, presence of nearby stream of sufficient

Improvement of Village-scale Productive Use in NEP (Mini-grid)

2016-2017 Fiscal Year

				Public			Productive
State/ Region	Effect House Hold	School	Clinic	Regilious Building	Street-light	Other	Energy User
4	1180	9	3	18	493	6	105

2017-2018 Fiscal Year

	Effect			Public	Productive		
State/ Region	House Hold	School	Clinic	Regilious Building	Street-light	Other	Energy User
6	3127	14	7	29	1138	2	561

Renewable Energy Target by NEP (2016-2021)

Unit	W/Unit or HH	Quantity	Total W
SHS	60	456500	27390000
School	375	3800	1425000
Rural Health Center	180	3800	684000
Religious Building	120	3800	456000
Street Light	70	19000	1330000
Mini-grid	200	35500	7100000
Total Watt Power			38385000
Total MW			38.39

Greenhouse Gas Reduction from NEP Project

• Replace candles, diesel/kerosene lighting, and diesel generators by renewable energy for village-scale mini-grids or hybrids or off-grid solar

Off-grid component		
Total household connection through village-scale mini grid	Number of households	35500
Emission reduction factor	t CO ₂ e/household/year	0.63
Total solar home systems	Number of households	456500
Emission reduction factor for 60Wp solar home system	t CO ₂ e/household/year	0.42
Greenhouse gas impact over project lifetime		
Emission reductions for mini-grid component (2016-2021)	Mt CO ₂ e	0.09
Emission reductions for SHS component (2016-2021)	Mt CO ₂ e	0.9

Renewable Energy Target by DRD (2030)

SHS

- Household per year 160,000
- RE target per year 10 MW

Mini-grid

- Village per year 100
- RE target per year -15 MW

Total RE target by DRD at 2030

 200-300 MW for Off-grid electrification; about 10% of total RE target by 2030

Positive Impacts on Local Communities

- Supporting to Promote Education and Health (Public Facilities: School, Health Center, Religious Building, Streetlight, etc.)
- Utilizing More Electrical Appliances (Mobile Phone, TV, Refrigerator, Sound Box, etc.) and Productive Uses (Water Pump, Forage Chopper, Mill, Welding and Lathe, etc.)
- Reducing the Expenditure and also Environmental Impacts

Investment Opportunities

- Submit International Competitive Bidding for SHS
- Propose the Proposal for Mini-Grid Project by proportionally contribution
 - in line with Government's Program
- Propose the Proposal for Mini-Grid Project by 100% investment as for
 - Developers

Challenges and Conclusion

Challenges

- ✤ Limited Capacity
- Community's knowledge and awareness
- Resource Allocation
- Development of Policy, rule and regulation
- Sustainable development

Conclusion

- RE Technologies Promising
- Improvement of capacity building for RE Technologies
- Incentive for Private Sector Participation
- Coordination of Public and Private Sector

Thank You For Your Attention