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Long-Term Power Sector Planning:

Balancing of Supply and Demand
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Guatemala’s Historic and Forecast Electricity Demand
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Source: CCS Guatemala Low Emissions Development Baseline Report: http://www.climatestrategies.us/library/library/view/1221.
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Long-Term Power Sector Planning:
Balancing of Supply and Demand
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Long-Term Power Sector Planning:
Resulting Energy Consumption
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Long-Term Power Sector Planning:
Resulting GHG Emissions
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Grid-System Operator:
Balancing of Supply and Demand
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Source: Scientific American;
https://blogs.scientificamerican.com/plugged-in/renewable-energy-intermittency-explained-challenges-solutions-and-opportunities/
Primary source: US DOE/EERE; https://www1.eere.energy.gov/solar/pdfs/50060.pdf.




Typical Daily Demand Profile:
California, USA
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Typical Daily Demand Profile:
Residential Device Level: NSW, Australia
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California Daily Generation Profile
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RE Integration Success and Challenges —

California’s “Duck Curve”

Net load - March 31
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Reducing RE Variability —
Applying the Law of Large Numbers
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https://blogs.scientificamerican.com/plugged-in/renewable-energy-intermittency-explained-challenges-solutions-and-opportunities/

Primary source: Perez et al; https://ieeexplore.ieee.org/document/4637912/.




Reducing
Variability —

Predictive
Modeling

Source: Scientific American;

‘Dataset

12346 6087 82101 OMYEMNMOTSONON
I-umm

L

123458 87 80NN UM ENTREIENED

- .

i dseTea”
Yo 0260 Woe €3 e

[ Dl

SO hoaTen «

Py s i et moafivhie

.&MN—

15 Mare Forecasted Powey

W hoants o rit oo S

MNew S wriom

Canvacity
™~

Time Axls
P 0 v Bafor s s
2~

Foner s b0 slvew ifter mow
L

T

urc -

https://blogs.scientificamerican.com/plugged-in/renewable-energy-inter mittency-explained-challenges-solutions-and-opportunities/

Primary source: US National Center for Atmospheric Research (NCAR):
https://www?2.ucar.edu/atmosnews/news/5771/ncar-wind-forecasts-save-millions-dollars-xcel-energy.

THE CENTER FOR

CLIMATE STRATEGIES



Reducing RE Variability —
Applying a Mix of RE Sources
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https://blogs.scientificamerican.com/plugged-in/renewable-energy-intermittency-explained-challenges-solutions-and-opportunities/
Primary source: DOE/EERE: https://www1.eere.energy.gov/solar/pdfs/50060.pdf. @
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Reducing RE Variability —
Applying a Mix of RE Sources

Figure llI-9: Solar Power & Hydropower Balancing Potential
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Maximizing Generation Flexibility:
Is this true for Myanmar Case 2 — Optimal Fuel Use?

Figure IV-18: OPTIMAL Long-Term Fuel Mix — Case 2 (Balanced Hydro ! Coal ! Solar PV)
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Storage: Role of
Utility-Scale Battery Systems

* Dispatchable capacity: for example, Tesla’s Solar PV and
Battery Project in Kauai, Hawaii
* Grid resilience: near instantaneous response to load
fluctuations on the grid:
129 MWh and 400 MWh projects pms
in southern Australia, e
More are underway or planned

O AT E STRATEGIES Source: https://inhabitat.com.




More on Storage

Emerging battery types (for example, flow batteries) are
expected to bring costs down from current lithium-based
batteries.

“Virtual power plants”: Large numbers of distributed RE
systems could be tasked with providing resiliency (voltage
support) to local grids

In theory, could replace the need for gas or diesel “peaker
plants”

Other forms of storage: pumped hydro; hydrogen; etc.

Demand Management: shiftsin demand to consume
electricity when it is abundant
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Considerations for RE Integration Planning
& Implementation

* The electricity “system” is not limited to the current
and future electrical “grid” and its associated
generation resources —

— Dependingon level of service needs, distributed
renewables or micro-grids avoid the costs of inter-
connection with the grid

* When inter-connected with the grid, distributed RE
can support:
— reliability (voltage regulation)
— quality (reduced line losses)
— market expansion (new supply sources) © st storeors
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Recommendations for RE Integration
Planning & Implementation

* Develop and apply electricity system models
capable of:
— geographic specificity: electricity load-balancing
region level, if possible

— temporal specificity: seasonal and diurnal supply
and demand profiles

— ability to compare costs and impacts of a baseline
electricity system to alternative systems with
different RE sources, RE penetration levels, and
demand assumptions
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Recommendations for RE Integration:

Modeling to Assess System Flexibility and Resilience

Net load - March 31
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Recommendations for RE Integration
Modeling to Assess System Flexibility and Resilience

Inadequate Reserve Margin
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