Workshop on Promoting Renewable Energy and Sustainable Development in Myanmar

Development, technologies and policies for photovoltaic generation and micro-grid in China

HUANG Lei, huanglei@ms.giec.ac.cn Laboratory of distributed generation and microgrid GIEC. CAS

June 7, 2018

院广州能源研究所 nergy@onversion/ChineseAcademy/of/Sciences

Outline

- 1. Brief introduction of PV generation
- 2. Development of PV generation in China
- 3.PV generation technology
- 4.PV Microgrid technology
- 5.PV generation policies in China

1. Brief introduction of PV generation

Introduction

- Solar energy utilization technology: photothermal, PV generation and photochemical technology.
- The principle of PV generation technology: using the principle of photovoltaic effect of semiconductor devices to carry out photoelectric conversion, the conversion device (solar cell) to convert solar radiation energy into electric energy.
- From space to the ground: It took nearly 40 years.
- The characteristics of PV generation: safety, no noise, no pollution, short construction period, arbitrary installation, simple maintenance, and unattended operation.

Principle diagram of solar power generation

• Brief history of PV generation application

Years	Short description	Details
Before 2000	Exploratory	 1958, first mono-silicon PV cell in CN 1975, first solar PV cell factory 1998, first 3MW Poly-silicon PV cell and application system pilot
2000 ~2008	Start	2001, 10MWp PV cell production line is founded
2009 ~2011	"Gold sun projects"	 2009, China became the world's largest solar cell producer Since 2009, "golden sun project", "BIPV demonstration" large scale PV station concession tendering and 50% initial investment subsidy for distributed PV
2012	Setback	2012 , the United State started "double reverse"
2013 ~2015	Warmer	 The State Council issued some favorable policies. It was clear that by 2015, the total installed capacity will be more than 35GW By the end of 2015, China became the world's largest PV installation country with 43 GW PV installation
2016 to present	Boost	 China's PV installation boost in the 13th Five-year plan 2017, 52.8GW additional PV installation

• Installation capacities and generation ratio in the last five years

160000 140000

120000

100000

80000

40000

20000

0

2013

2014

PV

PV power accounts for the proportion of total

electricity generation (%)

2015

Centralized PV

PV installation capabilities (MW)

Source: National Energy Administration

Decentralized PV

2017

2016

2020 Forecast

in 2015

• China's share in global solar PV manufacturing and demand

Global renewable auctions overview

Prediction

Price benchmark for fixed-axis utility-scale PV systems, 2016 \$/W(DC)

Utility scale lithium-ion battery system costs (2016 USD / kWh)

Source: Bloomberg New Energy Finance, 2016

; Bloomberg New Energy Finance – Grid-Scale batteries in Australia, 2017; Future Energy & Finance ASIA Risks and Returns in Solar Investments(Conergy)

Prediction

*Levelized cost of power over the lifetime of a plant. Ranges reflect the impact of low/high estimates for: cost of capital; load factors for solar and wind; fuel prices for gas and coal. Solar and wind include estimates of system integration costs

18 Renewables* 16 Hydro Nuclear 14 Coal 12 Gas Oil 10 8 6 4 2 0 1965 1975 1985 1995 2005 2015 2025 2035

Billion toe

Source: BP Energy Outlook 2017 edition; Bloomberg New Energy Finance

Prediction

Source: PV Status Report 2017

• Solar cell types

	Types	Efficiency	Features
The first generation	Mono-silicon	Avg. 20.5	Commercialize, high efficiency, medium cost
solar cells (crystalline)	Poly-silicon	Avg. 18.8	Commercialize, diversify
The second generation	Amorphous silicon	Avg. 13%	Low cost, efficiency decay
solar cells (thin-film)	Dye-sensitized (DSSC)	Avg. 12%	Low cost, unstable
	Copper indium selenium (CIS)	8~12%	Indium is rare metal
	Organic	Avg. 6.5%	Flexibility, unstable
	Gallium arsenide (GaAs)	Above 30%	High efficiency, high cost
The third generation	Quantum Dots	concept	Theoretical limit efficiency up to 68%
solar cells	Hot-carrier	concept	

Solar cell market

- Silicon occupies the largest market share .
- Silicon PV cell development: thinner, larger size, higher efficiency.
- Thin film PV cell (CIGS, a-si, CdTe) has a small market share

	Silicon	Amorphous silicon	CIS /CIGS	GaAs
Highest efficiency	24%	13%	21%	20%
Commercial efficiency	18~20%	6~8%	11~12%	13~15%
Market share	About 95% Mono- 49% Multi-Si 46%	<1%	2%	3%

Silicon PV industry chain

中国科学院广州能源研究所 GuengZhou(Institute of Renergy Conversion, Chinese Academy of IS denoes

Silicon PV industry chain

- Silicon material technology is the key link of the PV industry with the highest profit.
- In 2017, China's production of polysilicon : 242 thousand tons, silicon wafer: 87GW, PV cell: 68GW, PV module: 76GW.
- China is the world's top producer accounted for more than 50% of the total scale of production .

• PV inverter types

Attribute	Central Inverter	String Inverter
Capacity	Up to 4 MW-AC	25 to 125 kW-AC
Installation	Concrete pad or steel skid, crane lift	Rack mountable, 2 person lift
Design	Isolation Transformer, typically grounded, air or liquid cooled	Transformer-less, typically floating ground, air or convection cooled
Cable losses	Shorter AC cable runs	Shorter DC cable runs
Grid Interaction	dvanced Inverter Functions (e.g. frequency/voltage ontrol, reactive power compensation, etc.)	
Unplanned Maintenance	Service failed component in the field	Remove failed component, send to factory for possible refurbishment
Design Life	10 to 25 yr with refurbishment	+20 yr, limited (or no) field service
Maximum Power Point Tracker (MPPT)	Single or Multiple	Multiple
Warranty	~5-10 year	~10 year

Central inverter

Source: ICF.com, A Guide to Choosing Central Versus String Inverters

String inverter

• PV inverter application scheme

Central inverter is generally used in large power plants with uniform sunshine, desert power stations, ground PV stations and other large power generation systems. The total power of these system is usually

in the megawatt scale.

Main features	Main drawbacks
Easy management of inverters	High failure rate of combiner box
High reliability	Narrow MPPT range, short generation time in cloudy day
Low harmonic	Inverter room requirement
Low inverter price	Complex system maintenance
High security	Low efficiency under partial shaded condition
Good regulate ability	No redundant ability

• PV inverter application scheme

String inverter is generally used in medium and small scale BIPV system and small ground PV station.

Main features	Main drawbacks
Increased generation	Lower reliably
Wide MPPT range	Lower security
Small size and light	Higher harmonic
Easy transport and install	High difficulty in monitoring
Small fault impact and Low power consumption	Difficult to achieve functions such as power regulation when multiple machines run in parallel
Easy maintenance	

• PV inverter application scheme

Simple recommend configuration

System capacity	Recommended inverters	Instructions
<400kW	String inverter	Similar investment cost, string inverters have a higher efficiency
400kW~2MW	String inverter	String-inverter system cost is higher then central-inverter system. But String-inverter system generation is higher. The total income of string- inverter system is higher.
2MW~6MW	Uniform irradiation area: centralized inverter non-uniformity irradiation area: string inverter	Chosen according to application areas
>6MW	centralized inverter	Centralized inverter meet the grid requirement

- PV system classification
 - PV system Classified by operation mode

Stand-alone PV system	Grid-connected PV system	Distributed multi- energy system
PV emergency power supply	Household PV system	Wind/PV hybrid system
Island PV system	Large-scale grid connected system	Wind/PV/diesel/storage
Remote area PV station	BIPV grid-connected system	PV/biomass CCHP
PV lighting system	Farm and PV system	PV/storage AC/DC hybrid system
Space and communication application PV system	PV shed	

Space and communication application

Grid-connected PV system

= Fr

Combination of PV and agriculture and animal husbandry

PV electronic and lighting products

È

- Grid-connected PV system investment(>1MW)
 - ≻Investment <7000RMB/kWp
 - ≻Annual maintenance cost≈ Investment × (0.1~0.3) %
 - ≻system efficiency>80%

Category	Investment/RMB	Ratio (%)
PV cell(including racket)	0.35	62.00
Inverters (above 10kW)	0.1	10.00
Distribution box and cable	0.1	10.00
Installation and debugging	0.1	10.00
Tax and others	0.05	8.00
Total	0.7	100

- The necessity of implementing PV by Microgrid technology
- PV generation characteristic : stochastic and intermittent RE
- Influence to the utility grid
 - Increase scheduling difficulty and reserve capacity
 - Change the demand side characteristic and Causes voltage rise
 - ▶ Power harmonic pollution due PV inverters
 - > Affect operation schedule, safety and relay protection of the utility grid

• Generation

- Controllable generation sources combustion engine, micro gas turbine, micro-turbine, fuel cell, etc.
- Uncontrollable generation sources PV generation, wind turbine, tidal power generation, etc.

• Inverters and bi-directional converters

• Energy storage

- \triangleright Battery, super capacitor, fly wheel, etc.
- Plug-in electric vehicles

• Software

- Energy management and integration with building automation
- ➢ Grid aggregation and dispatch
- Project finance and execution
- Operation and maintenance

Anatomy of a Microgrid

• Differences between microgrid and utility grid

Microgrid structure

- High voltage and transmission line
- Customers receive electricity
- Dedicated networks with limited resources
- Grid as a sole source
- Real-time data/control

- Low voltage and near demand side
- Customers receive/feed electricity
- Networks with shared assets and layered customer resources
- Grid as a back-up source and two-way flow
- Increased real-time data/control
- Including renewable resource

Trends & Outlook

According to Pike Research

- > CHP installed capacity is projected to double by 2022 to 80 GW
- North America is currently the largest region for microgrids
- The Asia Pacific region will likely emerge as the global leader for microgrid deployments by 2030 or 2035
- ➤ the Most Numerous Category of Microgrid Projects: Remote Microgrids
- Energy Storage will become a Key Part of Microgrid Deployments in the Decade Ahead

Chart 1.1 comCHP Installed Capacity by Region, World Markets: 2012-2022

(Source: Pike Research)

Annual Microgrid Revenue by Region, Average Scenario, World Markets: 2011-2017

(Source: Pike Research)

- Microgrid application forms
- Public institution and campus microgrids

• Commercial and industrial microgrids

• Regional and integrated microgrids

• Island and remote microgrid

• Storage configuration-a key role in PV large scale development

Combined heat and power co-generation

 \triangleright

4.PV Microgrid technologyElectric vehicle microgrid

Applications

Large-scale RE station Islands Large-scale villages Back-up source Non-electricity area Load shifting

Control strategy

Grid-connected mode

PV, other sources and utility grid supply power Extra power stored in battery Off grid mode

PV and other sources supply power coordinately

Combine PV and EV to increase PV utilization and reduce EV effect

• Electric vehicle microgrid

Applications

Small-scale RE station Off grid villages Non-electricity area MG demonstration

Control strategy

Grid-connected mode

PV, other sources and utility grid supply power Extra power stored in battery Off grid mode

PV and other sources supply power coordinately

Combine RE and EV to increase RE utilization and reduce EV effect

• Island microgrid

Selected microgrid projects in China

- Before 2007, China's early stage of photovoltaic power generation was mainly to solve electricity shortage in the western region. By the end of 2007, accumulative stand-alone PV project is 17.8MW and grid-connected project is 2.2MW.
- After 2009, as the implement of "golden sun project" and "photoelectric building application demonstration", the distributed PV market was greatly stimulated.
- For distributed PV project, the initial investment subsidy was made since 2009 to 2013, and the electricity subsidy was implemented after 2013 ¹⁴⁰⁰⁰⁰ (0.42 RMB->0.37RMB). And the ¹⁰⁰⁰⁰⁰ distributed PV installed capacity ⁸⁰⁰⁰⁰ increased significantly in the 13th ⁶⁰⁰⁰⁰ Five-Year plan. ⁴⁰⁰⁰⁰
- For large scale ground PV stations, the subsidy form of benchmarking is adopted since 2008, and the amount of subsidies is divided according to regional resources and varies from different periods.

PV installation capabilities (MW)

• PV generation price and subsidy since 2018

Solar irradiation	Centralized PV station Feed-in Tariff prices (RMB)/kWh	Distributed PV system PV prices (RMB)/kWh		
resource zone		Local consumption	the redundant power back to grid	
I	0.55	Electricity price + 0.37 (subsidy)	The benchmark electricity price of desulphurized coal combustion + 0.37	
П	0.65			
Ш	0.75		(subsidy)	

- Key points :
- Centralized PV station and distributed PV system both have FIT prices, and the scales are control by annual planned scale.
- The scale of BIPV and local-consumption PV system project is not limited.

• Distributed PV generation project regulation since 2018

	Distributed PV generation project regulation policies
Categories	 Household PV system < 50kW Single point grid-connected < 6MW Local consumption PV system: 6MW~20MW
Regulation and subsidies	 All DPV is under scale regulation except household PV system Household PV system must be invested by house owner Household PV systems are allowed to all operation mode Other DPV are not allowed to feedback all PV electricity All three categories are guaranteed of timely payment of subsidies
Influence	 Household PV systems are not under scale control All three categories are guaranteed of timely payment of subsidies
	 3) DPV systems without local consumption except for household PV are not included in DPV regulation without guaranteed timely payment 4) DPV systems except for household PV are under scale regulation and reduce market shares
Suggestions	All three categories should have no scale regulation

• Distributed generation marketized transaction

	Distributed generation pilot marketized transaction policies
Transaction modes	 Direct transaction (recommend) Commissioned transaction Benchmark price based transaction
Description	 PV system in pilot transaction areas are automatically incorporated into the scope of subsidies after the construction of the project Grid enterprises are responsible for metering and subsidies transfer National energy administration determined the annual quotas to the end of 2020
Some details	 All PV projects included in pilot marketized transaction implement fixed electricity price subsidy For direct transaction projects, local consumption > 75% When direct transaction and commissioned transaction fail, the project's transaction mode is automatically changed to benchmark price based transaction mode

• Forecast of the PV generation market in the next three years

Forecast of the PV generation market in the next three years

- 1) Limit target for ordinary PV
- 2) PV poverty alleviation is development focus
 - Top runner project's annual installation of PV station is 8GW in 2017~2020
- BIPV and local consumption PV projects is the main develop area in 2018~2020
- China's PV capacity is huge(>100GW), and above 50% capacity need to be consumed in China

PV market priority: electricity reform project, poverty alleviation project, unlimited-scale distributed PV, top runner project, PV+(hydro, farm, forestry, livestock farming), ordinary PV station

2

	Analysis of the priority in PV generation market
Electricity reform project	 Has quota 2) No limit on electricity Fix and guarantee subsidy
Poverty alleviation project	 State key management projects Subsidies are not in arrears.
Unlimited- scale distributed PV	 Unlimited scale Timely subsidy All electricity feed back to grid or self consumption
Top runner project	 No problem in land, grid connection and consumption Low transaction cost and fierce competition
PV+(hydro, farm, forestry, livestock)	 Need quota Subsidy need to be queued No need to bid and no discarding PV generation
Ordinary PV station	 Large scale and high income Need quota and subsidy need to be queued Discarding PV generation and high transaction cost

THANK YOU VERY MUCH FOR YOUR ATTENTION!

HUANG Lei

huanglei@ms.giec.ac.cn

